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ABSTRACT
Recently, room-temperature superconductivity has been reported in a nitrogen-doped lutetium hydride at near-ambient pressure
[Dasenbrock-Gammon et al., Nature 615, 244 (2023)]. The superconducting properties might arise from Fm3m-LuH3−δNε. Here, we sys-
tematically study the phase diagram of Lu–N–H at 1 GPa using first-principles calculations, and we do not find any thermodynamically
stable ternary compounds. In addition, we calculate the dynamic stability and superconducting properties of N-doped Fm3m-LuH3 using the
virtual crystal approximation (VCA) and the supercell method. The R3m-Lu2H5N predicted using the supercell method could be dynam-
ically stable at 50 GPa, with a Tc of 27 K. According to the VCA method, the highest Tc is 22 K, obtained with 1% N-doping at 30 GPa.
Moreover, the doping of nitrogen atoms into Fm3m-LuH3 slightly enhances Tc, but raises the dynamically stable pressure. Our theoretical
results show that the Tc values of N-doped LuH3 estimated using the Allen–Dynes-modified McMillan equation are much lower than room
temperature.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0151844

I. INTRODUCTION

Hydrides have received much attention because of their excel-
lent superconductivities under pressure.1–4 In 2014, H3S was pre-
dicted to be a high-temperature superconductor with a Tc of
191–204 K,5 which was confirmed by the experimentally mea-
sured Tc of 203 K at 155 GPa.6,7 Following this success, several
superhydrides with high Tc values above 200 K, such as LaH10
(260 K, 170 GPa), YH6 (224 K, 166 GPa), YH9 (260 K, 201 GPa),
and CaH6 (215 K, 172 GPa), were predicted and synthesized.8–18

Recently, Song et al.19 comprehensively studied the Lu–H system
and predicted that Im3m-LuH6 should have a Tc of 273 K at
100 GPa. Extensive experimental research has been conducted on
the superconducting properties of lutetium hydrides under pres-
sure. Fm3m-LuH3 has been successfully synthesized and found to
have a Tc of 12 K at 122 GPa.20 Moreover, Pm3n-Lu4H23 has been
obtained, with a Tc of 71 K at 218 GPa.21 In particular, a very recent
experimental study has reported superconductivity in the Lu–N–H

system at near-ambient pressure (∼1 GPa), with the highest Tc to
date of 294 K,22 thus achieving room-temperature superconduc-
tivity near ambient pressure. The authors of this study attributed
the room-temperature superconductivity in the Lu–N–H system to
Fm3m-LuH3−δNε, which can be regarded as Fm3m-LuH3 doped
with nitrogen atoms.

This report could represent a landmark event for the scientific
community, but many open questions surrounding this important
discovery remain unanswered, for example, the exact stoichiometry
and the positions of the hydrogen and nitrogen atoms. A subsequent
experimental observation indicates that the pressure-induced color
change of LuH2 is similar to that of N-doped lutetium hydride.23

In addition, a similar compound (LuH2±xNy) has been synthesized,
but no evidence for superconductivity at pressures ranging from
1 to 6 GPa has been found.24 Density functional theory (DFT)
calculations have been used to investigate the optical properties
of lutetium hydrides25 and the phase diagram of the Lu–N–H
system at 0, 5, and 10 GPa,26 but no thermodynamically stable
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ternary compounds have been found. Therefore, an investigation
of the superconducting properties of N-doped lutetium hydrides is
necessary.

In the work described in this paper, we performed a compre-
hensive first-principles study on the Lu–N–H system at 1 GPa. No
thermodynamically stable Lu–N–H ternary compounds were found
using the structure search method. We then analyzed the dynamic
stability and superconducting properties of N-doped Fm3m-LuH3
using the virtual crystal approximation (VCA) and the super-
cell method. Using the Allen–Dynes-modified McMillan (A-D-M)
equation, we found that the estimated highest Tc of N-doped LuH3
did not exceed 30 K, which is much lower than room tempera-
ture. In addition, we found that the doping of nitrogen atoms may
slightly enhance Tc but also increase the dynamically stable pressure
of LuH3.

II. COMPUTATIONAL DETAILS
At 1 GPa, we performed a variable-composition crystal struc-

ture search in the Lu–N–H system with ∼10 000 structures using
the Ab Initio Random Structure Searching (AIRSS)27 code. We then
re-optimized the structures using the ab initio calculation from the
Cambridge Serial Total Energy Package (CASTEP).28 An on-the-fly
ultrasoft pseudopotential with valence electrons 1s1 for H, 2s22p3

for N, and 4f 145s25p65d16s2 for Lu was used, with a kinetic cutoff
energy of 800 eV. The Brillouin zone was sampled using a k-point
mesh of 2π × 0.03 Å−1 to make the enthalpy calculations converge
well to less than 1 meV/atom. Structural relaxations were performed
using projector-augmented wave (PAW)29,30 potentials, as imple-
mented in the Vienna Ab Initio Simulation Package (VASP),31 with
a cutoff energy of 600 eV. The exchange-correlation functional was
described using the Perdew–Burke–Ernzerhof generalized gradient
approximation.32

We then prepared a conventional cell of Fm3m-LuH3, includ-
ing four formula units (f.u.). The calculations were performed for
a range of pseudostoichiometric Lu4HmN12−m, including Lu4H11N,
Lu2H5N, Lu4H9N3, and LuH2N, which correspond to nitrogen-
to-hydrogen atomic ratios of 0.09, 0.2, 0.33, and 0.5, respectively.
Next, we calculated the formation enthalpies and superconducting
properties of these structures at 1, 10, and 50 GPa. The forma-
tion enthalpy of Lu4HmN12−m was calculated using the following
equation:

H f = H(Lu4HmN12−m) − 4H(LuH3) −mH(N) +mH(H). (1)

We investigated the pressure dependence of the superconduc-
tivity of Fm3m-LuH3 at 0.5%–2% doping with N using the VCA at
pressures below 100 GPa. The VCA was performed by generating
a virtual pseudopotential VVCA of H1−xNx, where VVCA = (1 − x)
VH + xVN. Furthermore, we calculated the equation of state for
LuH2.97N0.03, which is close to the elemental analysis data from pre-
vious experiments,22 using DFT and DFT + U (with U = 5.5 eV,
which has been used for metal mononitrides22). The result is shown
in Fig. S1 (supplementary material). The DFT result without the
Hubbard U effect fits better with the experimental data. Therefore,
the DFT level calculation for N-doped LuH3 is acceptable.

Electronic structures, phonon spectra, and electron–phonon
coupling (EPC) were calculated using the QUANTUM ESPRESSO
(QE)33 package. The PAW pseudopotentials with valence electrons
1s1 for H, 2s22p3 for N, and 5s25p65d16s2 for Lu were used in the QE
package. The self-consistent electron density was evaluated using a
k-mesh of 20 × 20 × 20. The phonon spectra and EPC were calcu-
lated using a q-mesh of 5 × 5 × 5. The conventional superconducting
transition temperature was estimated using the A-D-M equation34

FIG. 1. (a) Ternary phase diagram (convex hull) of the Lu–N–H system at 1 GPa.
The values of the enthalpy from the convex hull are shown next to the colored
circles. The circles with black solid boundaries denote the stable phases. (b)
Comparison of the XRD pattern from reported experimental data22 (lower black
curve) and the pattern calculated for P3m1-Lu2H2N at ambient pressure (upper
red curve). The inset shows the crystal structure of P3m1-Lu2H2N, with green,
gray, and pink spheres depicting Lu, N, and H atoms, respectively.
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FIG. 2. (a) Crystal structure of Fm3m-
LuH3 with different types of H occupancy
sites. Green spheres depict Lu atoms;
pink and red spheres depict H occu-
pancy of O and T sites, respectively.
(b)–(d) Calculated enthalpy of formation
of Lu4HmN12−m as a function of T-site
occupancy at 1, 10, and 50 GPa, respec-
tively. n(T) is the number of nitrogen
atoms in each stoichiometry occupying T
sites.

FIG. 3. (a) Phonon spectra, Eliashberg phonon spectral function α2F(ω), and electron–phonon integral λ for R3m-Lu2H5N at 50 GPa. The magnitudes of the phonon
linewidths are represented by the sizes of the blue circles. (b) and (c) Crystal structures of R3m-Lu2H5N in the framework of Fm3m-LuH3 and the conventional cell,
respectively. Green, gray, and pink spheres depict Lu, N, and H atoms, respectively.
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FIG. 4. (a) Dependence of minimum dynamically stable pressure on N-doping
concentration. (b) Dependence of Tc on N-doping concentration at 50 GPa. The
Coulomb pseudopotential uses μ∗ = 0.10.

with correction factors and a Coulomb pseudopotential35 with
μ∗ = 0.10 or 0.13.

III. RESULTS AND DISCUSSION
We performed a random structure search in the Lu–N–H sys-

tem and constructed the ternary phase diagram (convex hull) at
1 GPa [Fig. 1(a)]. Some of the binary compounds were adopted from
previous papers.36–39 Notably, all predicted potential ternary com-
pounds lie above the convex hull at 1 GPa. Thus, no ternary Lu–N–H
compounds can remain thermodynamically stable at this pressure,
which is consistent with the main results of Xie et al.26 In addi-
tion, P3m1-Lu2H2N was found with an enthalpy of ∼3 meV/atom
above the convex hull. Detailed information about the structural
parameters is listed in Table S1 (supplementary material). According
to the inorganic crystal structure database, 20% of experimentally

synthesized materials are metastable.40,41 Therefore, we calculated
the x-ray diffraction (XRD) pattern for this metastable compound.
Figure 1(b) shows a comparison of experimental and calculated XRD
patterns. The calculated XRD pattern of P3m1-Lu2H2N deviates
clearly from the experimental one,22 indicating that this compound
does not occur in high-pressure experiments on N-doped lutetium
hydride superconductors.

Next, we investigated the doping effect on N-doped LuH3
using the supercell method. The cubic cell of Lu4HmN12−m was
constructed by replacing hydrogen atoms with nitrogen atoms, for
m = 8–11. For each concentration, we performed a geometry opti-
mization on the configurations of various octahedral (O) and tetra-
hedral (T) sites [see Fig. 2(a)] and then calculated the total energy.
Figures 2(b)–2(d) show the results for the formation enthalpy of
Lu4HmN12−m at different pressures. At 1 GPa, only the formation
enthalpy of Lu4H11N is negative (∼−24 meV/atom), indicating that
this compound may be more stable than the others. A similar sit-
uation also occurs at 10 GPa (where the formation enthalpy is
∼−32 meV/atom for Lu4H11N). Thus, only Lu4H11N is thermo-
dynamically encouraged to be formed below 10 GPa. At 50 GPa,
Lu4H11N, Lu2H5N, Lu4H9N3, and LuH2N are thermodynamically
encouraged to be formed. Thus, Lu4HmN12−m with low nitrogen
doping is enthalpically favored at low pressure. The doping con-
centration of nitrogen increases with increasing pressure. In addi-
tion, when one nitrogen atom occupies a T site, the formation
enthalpy of Lu4HmN12−m at 50 GPa is the lowest. Therefore, one
nitrogen atom occupying a T site in Lu4HmN12−m is enthalpically
preferred.

We then calculated the phonon spectra and superconduct-
ing properties of Lu4HmN12−m. Tc values were estimated using the
A-D-M equation with correction factors (Table S2, supplementary
material). At 1 and 10 GPa, Lu4HmN12−m cannot dynamically sta-
bilize, which may be due to the thermodynamical42 and dynamical
instability of the parent Fm3m-LuH3 [see Fig. S2(b), supplementary
material]. At 50 GPa, only R3m-Lu2H5N can dynamically stabilize.
The crystal structure, phonon spectrum, and EPC of R3m-Lu2H5N
are illustrated in Fig. 3. R3m-Lu2H5N (Lu4H10N2) can be regarded
as Fm3m-LuH3 with two nitrogen atoms substituting its T and O
sites, respectively. The calculated phonon spectrum and EPC show
that the contributions of medium- and low-frequency phonons
(13–25 THz) to the EPC are the highest (about 46% to total λ),
whereas high-frequency phonons (45–55 THz) make hardly any
contribution. Thus, the EPC of R3m-Lu2H5N is primarily con-
tributed by medium- and low-frequency phonons. The calculated
EPC parameter λ for R3m-Lu2H5N at 50 GPa in the harmonic
approximation is 0.82. Using the calculated logarithmic average fre-
quency ωlog, along with a Coulomb pseudopotential μ∗ value of 0.1,
the resultant Tc value is 27 K.

In the case of low nitrogen doping concentrations, we used
the VCA method to investigate the pressure dependence of Tc in
N-doped Fm3m-LuH3. Figure 4(a) shows the dependence of the
minimum dynamically stable pressure on the N-doping concen-
tration. We find that the minimum dynamically stable pressure of
N-doped Fm3m-LuH3 increases from 25 to 70 GPa when the dop-
ing concentration increases from 0% to 2%. Thus, doping with N
atoms will raise the dynamically stable pressure of LuH3. Through
a softening mechanism,43 pressure can affect Tc by altering the
electron–phonon constant λ. Therefore, we calculated the Tc of
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FIG. 5. (a) Electronic band structure and DOS (states eV−1 f.u.−1) of LuH3 (solid black curves) and LuH2.97N0.03 (solid red curves) at 50 GPa. The grey solid horizontal line
indicates the Fermi energy. (b) and (c) Phonon spectra, Eliashberg phonon spectral function α2F(ω), and electron–phonon integral λ for LuH3 and LuH2.97N0.03, respectively,
at 50 GPa. The magnitudes of the phonon linewidths are represented by the sizes of the blue circles.

N-doped LuH3 with doping concentrations ranging from 0% to 1.5%
at 50 GPa [see Fig. 4(b)] to investigate the effects of doping with
nitrogen atoms on superconductivity. Our simulations show that the
lowest Tc is 4 K for LuH3 without doping. In addition, Tc increases
with increasing N-doping concentration; thus, doping N atoms
into LuH3 will increase Tc. However, the highest Tc in this VCA
calculation is 22 K, obtained with 1% N-doping at 30 GPa (see
Table S2, supplementary material), which is much lower than
room temperature. Notably, the anharmonicity correction to the
atomic motions imposed by the large ionic quantum fluctuation will
renormalize the phonon frequency in hydrogen-based superconduc-
tors. Therefore, the anharmonic effect may potentially decrease the
dynamically stable pressure of N-doped LuH3 and affect Tc, which
requires further theoretical investigation in this system.

We calculated the band structure and density of states (DOS)
of LuH3 and LuH2.97N0.03 (1% N-doped) at 50 GPa [Fig. 5(a)]. The
finite DOS at the Fermi level indicates the metallic nature of these
structures. LuH3 has a DOS N(ϵF) that reaches 0.269 states eV−1

f.u.−1 at the Fermi level. Doping N atoms into LuH3 will raise the
Fermi level and cause the bands near the Γ point to fall on top of the
Fermi level. Consequently, the Fermi level can be moved closer to
the DOS peak, and N(ϵF) will then increase to 0.6 states eV−1 f.u.−1

Therefore, doping by N atoms can significantly enhance the metallic
characteristic of LuH3 by moving the Fermi level closer to the DOS
peak.

We then examined the phonon spectra and EPC of LuH3
and LuH2.97N0.03 at 50 GPa [Figs. 5(b) and 5(c)]. In LuH3, the
electron–phonon constant λ is primarily contributed by the optical
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branch (λopt), which accounts for ∼69% of the total λ. Conversely,
the acoustic branch (λac) makes a much smaller contribution to
λ, accounting for ∼31% of the total λ. Doping by nitrogen atoms
at 1% concentration increases λac from 0.137 to 0.268, while λopt
remains almost unchanged. Therefore, the increased Tc of N-doped
LuH3 can be attributed to the enhancement of λac. Interestingly,
the optical branch with a frequency of ∼21 THz along the W–L–Γ
direction in LuH3 varies slightly with the wave vector q in the Bril-
louin zone. However, a significant softening of this phonon mode
is observed after doping by nitrogen atoms [Fig. 5(c)]. When the
pressure decreases to 25 GPa (Fig. S4, supplementary material),
the imaginary phonon frequency occurs near the L point, which
indicates that the optical branch softening induced by N doping is
responsible for the reduced stability of LuH3.

IV. CONCLUSIONS
We performed a first-principles study on the Lu–N–H sys-

tem and found no stable ternary compounds at 1 GPa. We then
analyzed N-doped Fm3m-LuH3 using supercell and VCA meth-
ods. The result of the supercell method indicates that R3m-Lu2H5N
can be dynamically stable at 50 GPa, with a Tc of 27 K. The
VCA results indicate that the highest Tc is 22 K, obtained with 1%
N-doping at 30 GPa. In addition, doping with nitrogen atoms
slightly increases the Tc of Fm3m-LuH3 by enhancing the EPC of
acoustic phonons. However, this doping effect also leads to signifi-
cant phonon softening and increases the dynamically stable pressure
of LuH3. Finally, within the pressure range investigated in our study,
the highest Tc of N-doped Fm3m-LuH3 does not exceed 30 K, which
is much lower than room temperature. Our theoretical calcula-
tions were performed using standard DFT parameters and assuming
conventional superconductivity, and calculations considering more
corrections, including strong electron correlations, spin–orbit cou-
pling, the anharmonicity effect, and unconventional mechanisms of
superconductivity are required in the future.

SUPPLEMENTARY MATERIAL

See the supplementary material for supplementary figures and
tables.
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